返回首页
你现在的位置: > 首页 > 行业动态 > 正文

姹紫嫣红!多能互补综合能源系统的应用

发布日期:2021/8/12


      多能互补系统是传统分布式能源应用的拓展,是一体化整合理念在能源系统工程领域的具象化,使得分布式能源的应用由点扩展到面,由局部走向系统。具体而言,多能互补分布式能源系统是指可包容多种能源资源输入,并具有多种产出功能和输运形式的"区域能源互联网"系统。它不是多种能源的简单叠加,而要在系统高度上按照不同能源品位的高低进行综合互补利用,并统筹安排好各种能量之间的配合关系与转换使用,以取得最合理能源利用效果与效益。


 


     如何通过“多能互补、源网荷协同”实现安全供能前提下的效益最大化,这是在能源互联网示范项目的实施中,专家们都很关心的一个焦点问题。这实现起来并不容易,从技术层面来看,这个焦点问题可归结为复杂的多能流网络的最优控制问题。这个最优控制问题是要追求效益的最大化,效益=收入-费用,约束前提是安全供能。这里的收入包括了售能、售服务,费用有购能、购服务等。优化的手段分布在冷、热、气、电、水、交通,源、网、荷、储等各个环节。约束条件包括供需平衡、运行的物理范围,以及供能安全等。这个焦点问题最终是通过一套系统来实现的,这套系统就叫做多能互补综合能量管理系统。


     多能互补综合能源系统(以下简称综合能源系统)的核心是分布式能源及围绕其开展的区域能源供应,是一种将公共冷、热、电、燃气乃至水务整合在一起的形式。综合能源系统一方面通过实现多能源协同优化和互补提高可再生能源的利用率;另一方面通过实现能源梯级利用,提高能源的综合利用水平。然而,由于综合能源系统是一种有较多变量,特性复杂、随机性强,多时间尺度的非线性系统,其规划问题较传统能源规划问题更为复杂。


 


      为什么要采用多能互补综合能源系统?


      在能源领域中,长期存在着不同能源形式协同优化的情况,几乎每一种能源在其利用过程中,都需要借助多种能源的转换配合才能实现高效利用。由于不同能源系统发展的差异,供能往往都是单独规划、单独设计、独立运行,彼此间缺乏协调,由此所造成了能源利用率低、自愈能力不强、供能系统整体安全性有待提高等问题。


     交谷太阳能在能源系统的规划、设计、建设和运行阶段,对不同供用能系统进行整体上的互补、协调和优化,可实现能源的梯级利用和协同优化,为解决上述问题提供了思路。不同能源供应系统的运行特性各异,通过彼此间协调,可降低或消除能源供应环节的不确定性,从而更有利于可再生能源的安全消纳。


 


      多能互补集成优化示范工程主要有两种模式:一是面向终端用户电、热、冷、气等多种用能需求,因地制宜、统筹开发、互补利用传统能源和新能源,优化布局建设一体化集成供能基础设施,通过天然气热电冷三联供、分布式可再生能源和能源智能微网等方式,实现多能协同供应和能源综合梯级利用;二是利用大型综合能源基地风能、太阳能、水能、煤炭、天然气等资源组合优势,推进风光水火储多能互补系统建设运行。


      建设多能互补集成优化示范工程是构建“互联网+”智慧能源系统的重要任务之一,有利于提高能源供需协调能力,推动能源清洁生产和就近消纳,减少弃风、弃光、弃水限电,促进可再生能源消纳,是提高能源系统综合效率的重要抓手,对于建设清洁低碳、安全高效现代能源体系具有重要的现实意义和深远的战略意义。


 


     多能互补系统的主要功能


    (1)多能流SCADA


     用于实现完整、高性能的准稳态实时数据采集和监控功能,是后续预警、优化和控制等功能的基础,并利用系统软件支撑平台提供的服务。多能流SCADA是I多能互补系统的“感官系统”,基于能源物联网,采集多能流数据(采样频率:电为秒级,热/冷/气为秒级或分钟级),完成相应的监控功能,并将数据提供给状态估计及后续高级应用功能模块,接收系统运行调控指令,并通过遥控/遥调信号下发给系统设备执行。多能流SCADA的功能界面包括能流分布、场站接线、系统功能、综合监视、操作信息、分析评估、智能报警等。


    (2)多能流状态估计


      由于多能流传感网络测点分布广、量测种类多、数据质量低、维护难度大、成本敏感度高,所以出现采集数据不全、错误的情况在所难免。因此多能流网络需要状态估计技术提供实时、可靠、一致、完整的网络状态,为IEMS的评估和决策提供基础。多能流状态估计通过补齐量测数据、剔除坏数据,可以实现坏数据的可估计、可检测、可辨识,最终达到减少传感器安装数量、降低通信网络复杂程度、降低传感网络的投资和维护费用的效果,通过提高基础数据的可靠性来提高评估与决策的可靠性,降低能源网络运行事故风险。


 


    (3)多能流安全评估与控制


      安全的重要性不言而喻,而能源系统的安全尤其关乎生命和财产安全。一方面需要建立“N-1”安全准则的概念,这个概念就是去关注最薄弱的环节,并且做出预案。上午我们成果的发布会上举了一个例子,是说台湾近期的一次大停电是由气的阀门故障导致的,那么那个阀门就是气-电耦合综合能源系统的一个薄弱环节。所以一定要时刻关注薄弱环节,出现问题一定要有预案,否则会面临巨大的风险。另一方面要关注园区交易关口的安全控制,园区关口的容量配置和运行的成本是个关键问题,一方面是容量越大变压器的投资成本越高,另一方面容量越大电网公司收取的容量费也越高。比如:50兆瓦容量和100兆瓦容量投资和运行的总成本相差很大,如果设计成50兆瓦的容量,万一实际容量超过了,会烧掉变压器。该怎么将关口潮流控制在50兆瓦以内,这就是安全控制问题。在多能流系统中,不同能源系统相互耦合和影响,某一部分的故障和扰动会影响到多能流系统的其他部分,有可能造成连锁反应,因此需要进行耦合分析。可以利用热、气等系统的惯性提供的灵活性,为电系统的安全控制提供新手段,可以利用这些新手段,做协同安全控制。


 


    (4)多能流优化调度


      这里有几个重要的概念:启停计划、日前调度、日内调度、实时控制。一个园区或者是城市的三联供、燃气机组、电锅炉都是可以启停的,有一些设备停下来可以降低成本,这就可以根据确定日前的最优启停计划进行启停。然后在启停基础上调节多少出力,这是日前调度。而日内调度是由于风光出力变了、负荷变了,所以日内需要再调度,以此来适应新的适合的发电出力,维持最优的出力和负荷的平衡。最后到了秒级还要进行控制,如对于网络安全问题、调压问题、调频问题,都需要进行实时控制。调度的时间尺度较长,一般以15分钟为单位,控制是以秒为单位,时间尺度较短。在多能流系统中,其可调控的手段比单一能源系统要多,从源网荷储的角度出发,可实现冷、热、气、电等的综合调度和控制。


 


    (5)多能流节点能价


      一个园区或者是智慧城市,一定要考虑建设一个非常好的内部的商业模式。内部的商业模式不是对外的,不是对上的,而是对园区内用户的,这样的一个商业模式应该是什么样?最科学的模式就是节点能价的模式。节点能价的模式首先需要通过计算确定各个地方的用能成本是多少,用能成本包括四个部分:一是能量发出来的成本;二是传输损耗的成本;三是网络阻塞的成本;四是多能耦合的成本。然后需要科学精准地计算各个结点的能价,包括冷价、热价、气价和电价,不同时刻、不同地点的价格,只有通过精准计算,才能使园区总的用能成本显著下降,因为可以用价格的信号来引导用户用能。这样整个园区的用能成本则可以通过柔性的能价手段得到显著下降。


     节点能价根据供应商的生产边际成本制定,当线路出现阻塞时,各节点的价格根据所在位置的不同而呈现不同的价格,实时价格可以激发用户侧的灵活性。节点能价科学体现了成本,有利于建立公平的内部市场机制。


 


      太阳能、风能、潮汐能等清洁能源的开发利用,为我们提供了一个全新的用能空间和场景。随着分布式发电供能技术,能源系统监视、控制和管理技术,以及新的能源交易方式的快速发展和广泛应用,能源耦合紧密,互补互济。综合能源系统作为多能互补在区域供能系统中最广泛的实现形式,其多种能源的源、网、荷深度融合、紧密互动对系统分析、设计、运行提出了新的要求。综合能源系统一般涵盖集成的供电、供气、供暖、供冷、供氢和电气化交通等能源系统,以及相关的通信和信息基础设施。传统的能源系统相互独立的运行模式无法适应综合能源系统多能互补的能源生产和利用方式,在能量生产、传输、存储和管理的各个方面,都需要以考虑运用系统化、集成化和精细化的方法来分析整个能源系统,进而提高系统鲁棒性和用能效率,并显著降低用能价格。


     多能互补在综合能源系统中的关键问题


    (1)多能互补协同运行调度


     多能互补的协同调度优化一直是这一领域研究的重点和关键,是系统规划和市场互动博弈的基础。通过多个系统的协同合作,实现区域系统的经济和能效目标,并促进区域新能源的大规模消纳。相反的,系统的耦合在取得效益增益的同时,故障后发生的影响范围和影响程度也会扩大,特别是对于不同时间尺度的系统来说,很容易发生故障传递,因此,对于多能互补的系统风险评估还需要进一步深入研究。


 


     (2)多能互补协同规划策略


      对于多能互补的协同规划,规划场景构建与预测较传统的电力系统规划更加复杂,综合政策、市场、气象等重要信息,构建基于数据分析的规划场景。依据源荷互补特性划分互动集群,分别建立集群内源-荷-储优化配置模型和供能网络规划模型,并基于分解协调思想实现互动集群和互联网络的协同优化规划。在各场景下,通过冷热电负荷需求、规划问题不确定性及负荷可调潜力分析,计算用能需求的时空分布,据此确定规划策略。


    (3)考虑用能替代的综合需求响应


     对多能互补系统,用户参与需求响应的手段不仅限于传统的电能削减和在时间上的平移。用能替代正逐渐成为综合需求响应的一个重要方式,能量的替代使用可降低用户侧的用能成本,在满足用能需求的前提下响应各个能源系统的调度期望,可观的响应收益为用户相应行为提供充足的驱动力。但是,当前调度、规划以及市场的研究中,很多都忽略了这种新的用户响应形式。


 


   (4)热/电/气多能流计算


      无论是在规划还是调度运行中,能流计算一直是多能系统静态分析的一个关键问题。一般采用改进的能源集线器模型,考虑耦合单元作为平衡节点对于电力网络和天然气网络潮流的影响,形成该系统适用的潮流求解算法。相应的研究可分为统一求解法和解耦求解法两类。采用统一求解法时,需要建立电力-天然气系统的混合模型,然后在统一的框架下建立包含多个能网状态的潮流方程,对系统综合潮流进行求解,在算法求解方面往往要求较高。而解耦求解法需分析不同模式下多个系统的耦合关系,将电力潮流与天然气以及热力系统解耦计算,因此可以在原有独立的潮流计算模块上增加电/气/热耦合分析模块来实现,计算难度较小。


    (5)多能市场互动策略与交易机制


      综合能源系统的多能互动参与主体主要包括园区综合能量管理中心、各类工业用户、居民用户、电动汽车、新能源、储能、热电冷联产系统等。各类主体在互动框架中扮演着不同的角色,根据自身的用电特性、风险偏好和响应潜力,响应电价信息和管理中心发布的可中断信息,调整自身负荷计划,从而达到柔性互动的目标。然多能主体众多,不同的用户利益诉求不同,其参与互动的目标也有所差异,因此一个能够吸引用户参加的健全的互动机制,应在一定程度上满足各个主体不同的利益目标。



 
     

      交谷太阳能在长期的工程实践中总结经验,并广泛的和行业专家进行探讨,集思广益整理出了一套方案,供大家参考。


     一、系统解决方案


      1、区域多能互补协同优化策略


     从系统的角度看,耦合不同的能量载体相对于常规的去耦能量供应网显示出许多潜在的优点,冗余能流路径提供的一定程度的自由度为多能协同优化提供了空间。通过能量系统互连互通,改善不同能源在不同供需背景下的时空不平衡,实现降低系统用能成本、提高用能的效率以及增强供能的可靠性的目的。同时,这也使得协同优化问题的规模和求解难度也不断提高,设计易于实施且优化效果明显的运行策略一直是国内外的研究热点之一。


 


      2、多种储能的控制方法和配置策略


      现阶段,按照时间尺度来划分,电储能一般用于“低储高发”、联络线功率控制和电能质量治理三个方面,经济效益在峰谷电价差和延缓电网升级两方面。由于供冷是非时变的,储热没有套利空间,一般用于与CCHP机组协调调度,优化CCHP机组的运行状态,使以热定电的CCHP机组可在用电峰时段多发电,燃气锅炉运行在效率较高的状态,在用电谷时段停机由储能供热,显著提高机组的经济效益。另外,对于电制冷机组,其经济效益与实时电价关系密切,加入蓄冷可以显著降低电空调的运行成本,减少电制冷机组的配置容量。


      3、能源中心运行智能管理


      用户侧的灵活资源、分布式电源、储能设备将得到更加广泛的应用,电、气、冷、热等多种能源形式在用能端的交叉耦合和相互转换也将更为紧密,同时也为多元用户主动参与综合能源系统互动提供物质基础,也促进了能量流、信息流、业务流等特性各异的物理对象的融合。未来的综合能源系统不再是由供给侧到用户侧的单向能量传递,能源用户也由过去的能源使用者转换成能源消费者和服务商,传统能源系统中供给者、消费者的概念被淡化,取而代之的是综合能源系统供需双侧的智能交互。


 


      二、系统配置


      由于综合能源系统向用户直接供能,当用户负荷需求变化时,存在用户负荷的热(冷)电比与系统热(冷)电比保持不一致的问题。从满足负荷需求的角度考虑,有四种常用的系统配置方法[9]即采用补电子系统集成方法、采用补热子系统集成方法、电-热转换集成方法以及采用蓄能手段的集成方法。当热电相对较小或用户电负荷大于原动机功率时,可以采用并网补充电能或使用可再生能源补充电能。当综合能源系统的供热容量不能满足需求时,则采用补热子系统供热。此外,当用户热(冷)电比大于系统输出比时,可以采用电-热转换,将热需求转换为电需求。当用户需求存在峰谷差时,将蓄能手段引入综合能源系统,可有效缓解非同步引起的供需矛盾,提高系统变工况调节能力。


 


     根据公共电网接入方式的不同可分为三种配置模式:孤岛运行模式、并网不上网模式、并网上网模式。孤岛运行模式下,综合能源系统处于独立运行模式,与公共电网之间不架设连接线路,适用于具有丰富风能或太阳能等可再生能源地区,可为公共电力网络尚未覆盖完全的偏远地区提供多种能量保证。第二种为并网不上网模式,即发电全部自用,不足时从公共电网购买,已被广泛应用于大型工业园区、新型住宅区以及医院等人流量较高的场所,是最为典型的冷热电多联供系统应用模式。第三种为并网上网模式,不仅可从电网购电,也可将富余电力出售给电网以获取收益。此种模式对电能质量、稳定性及安全性要求高,且控制系统设计也较为复杂,实际电网建设中尚未得到应用。


      三、系统设备


      综合能源系统较传统供能系统利用的能源种类、供能形式多样,可满足冷热电等多种用能需求,因此设备种类也更为多样化。


 


     1、原动机


     原动机或发电单元是综合能源系统的核心部件之一。为了实现多能系统所设计的性能指标,须谨慎选择原动机的类型及容量。分布式冷热电联供系统中各种类型的原动机的使用特点,并给出了典型的使用案例。在设计的前期阶段为原动机选型提供前期参考。


      常见的原动机类型有燃气内燃机,燃气轮机,微型燃气轮机,燃料电池,光伏电池、风力发电机等。


      内燃机将燃料与空气注入气缸混合压缩,点火引起爆炸,产生的高温高压燃气膨胀推动活塞做功,通过气缸连杆和曲轴等驱动发电机发电。内燃机发电效率较高,功率范围广,适应性能好,结构紧凑、体积小、重量轻,启动速度快,操作方便、维护简单、大修周期间隔长。


      燃气轮机及微型燃气轮机由压气机、透平,加热工质的设备(燃烧室)控制系统和其他辅助设备等组成,压气机为燃烧室提供高压空气,燃料在燃烧室内燃烧释放出热量加热空气,产生高温高压气体在透平中膨胀做功,将热能转化为机械能。目前燃气轮机技术成熟,商业化应用广,效率高,体积小,质量轻,摩擦部件小、振动小、噪声低、污染少。


 


     燃料电池将燃料中的化学能通过化学反应直接转化为电能,不经过燃烧过程,不受卡诺循环效应的限制,效率高;没有机械传动部件,没有噪声。目前国内燃料电池主要用于传统发电,在冷热电联供系统中尚未大规模使用。


     光伏电池将太阳光照转化为直流电能,无污染,不受资源分布地域的限制,可在用户侧就近发电;缺点是受到气象条件限制,能量输出不稳定。光伏电池适用于光照资源充足、传统电网接入困难的偏远地区。


      风力发电机将风能转化为电能,优点是能源清洁、环境效益好,缺点是噪声大,对风场选址要求高,发电不稳定。适用于风能资源丰富、人口稀疏的地区。


     2、制冷设备及供暖设备


      吸收式制冷机通过烟气或热水驱动,采用溴化锂或氨水等制冷工质制冷,是余热利用常用的制冷设备。根据工质、驱动热源、利用方式和用途对吸收式制冷机进行分类。


      余热锅炉利用工业过程产生的余热及可燃物质燃烧后产生的热量将水加热,用于工业利用或采暖。分为一般型和补燃型,一般型余热锅炉与热交换器类似,不存在燃烧过程。


 


      热泵是一种利用低品位热资源,既可供热又可制冷的高效节能的空调技术。冬季时可通过热泵机组将室外热量输送进室内供热,夏季时可将室内热量输送到室外降温。根据热源不同可将热泵分为空气源热泵、地下水源热泵、土壤源热泵、双源热泵等。热泵适用于具备常年恒温冷热源的地区。


     2.1设备容量选择


      当原动机及供热、供冷设备的类型确定后,需要合理选择设备的容量,以最大化设备容量的利用率,这需要考虑到多个影响因素,包括:用户的冷热电负荷需求、选用的原动机特性、一年中电价与能源价格的波动等等,处理该问题可使用最大矩形面积法。这种方法源于数学中计算积分的方法,即将所研究的函数值作为矩形的高度来计算一系列矩形的面积。在综合能源系统的初步规划阶段,在已知时间-负载曲线为前提的条件下,可以使用最大矩形面积法来估计设备的容量以及运行的时间。使用最大矩形法(MRM)估算了不同场景下综合能源系统的燃机容量。在已知日常运行负荷的前提下,使用最大矩形法得到了不同运行策略下原动机的容量配置。以苏州某CBD区域建筑为例,根据相同类型的建筑实测数据获得了建筑冷热电8760 h逐时负荷曲线,使用最大面积法确定三联供系统的最佳容量。分析结果表明使用最大面积法确定的设备容量具有较好的一次能源利用效率和经济性。


 


     2.2设备容量优化


      MRM方法在确定综合能源系统时简单便捷,但只考虑了用户的负荷需求,并没有考虑到设备成本、运行费用等因素,因此需要对多能联供系统作进一步优化。


      使用基于MRM的遗传算法优化方法对综合能源系统进行优化,优化变量为原动机容量、电制冷比系数、太阳能发电面积占比。


      优化结果表明,多能互补系统的全年综合指标相比传统分供系统有了显著提高。以联供系统净值最大作为优化目标,建立联供系统设备优化模型,对分别配置两种额定发电功率的燃气内燃机发电机组的联供系统进行经济性比选,确定设备的最优容量。应用解析法,结合各负荷区间出现的频数统计,得到不同容量匹配方案下设备年等效满负荷运行时数及相应收益,通过比较净现值确定燃气三联供和热泵设备的最优容量匹配方案,并结合案例进行了验证。提出了计算系统综合能效的量纲表达式以辨析各影响因素与综合能效间的关系,并展示了如何通过综合能效分析确定系统配置方案。以投资及运行成本最小化为优化目标,引入了条件风险价值作为风险亮度的指标,建立了基于投资理论中考虑到风险量度的虚拟电厂容量优化配置模型,研究了风险偏好、环境成本自然资源及负荷对虚拟电厂容量配置的影响。该文献还以美国德州某地区的风、光、电价及负荷数据为实例进行了模拟,模拟结果验证了模型的正确性,为投资商在规划建设时解决多能源容量配置问题提供了依据。


 


      四、运行策略


      1、综合能源系统的运行策略将直接影响系统的性能。总结了几种最常用的运行策略:


      (1)以热定电:系统首先满足用户的热需求,发出的电提供给用户,如果电量不足或剩余,则从电网补充或上网售电


      (2)以电定热:系统首先保证满足用户的电需求,所发出的热量提供给用户以满足热需求,如果热量不足,则采用锅炉补燃,如果热量过剩则废弃或采用一个蓄热罐储存。


       (3)持续运行:系统在预定时间内持续运行,不考虑能源需求的变化,这种运行策略适用于原动机不能够灵活调节功率的情况,如果系统所生产的能源能满足覆盖用户的需求,则余电长期上网,反之,则长期从电网购电。


       (4) 调峰运行:系统仅在负荷高峰期间运行,以降低用能高峰期间从电网购得的电能。


      从热电输出和燃料消耗量方面比较了以燃气轮机作为原动机的联供系统“以热定电”和“以电定热”两种常用运行模式下的性能差异。该研究通过Aspen Plus软件实现系统性能的计算,研究结果表明当实际热电输出等于终端的热电需求时,其最佳热电比HPR为1.75;当1HPR1.75,“以热定电”为最佳的运行方式;1.75HPR2.5时,“以电定热”为最佳的系统运行方式。


 


     2、运行策略优化


      按电、烟气、蒸汽、水和空气5种能量传递形式进行分类,采用集中母线的方式搭建基本框架,对各个设备进行建模,建立了冷热电联供系微网系统日前动态经济调度的0-1混合整数线性规划模型,通过调节系统中各设备运行方式和工作状态,实现系统经济运行。对基于光伏电池、燃料电池和蓄电池的住宅能源系统为研究对象,使用混合整数线性规划理论构建运行优化数学模型。模型以年运行费用最小化作为目标函数,以能源供需平衡和设备容量为约束条件,使用LINGO进行建模求解得到年运行费用最小的运行策略。对针对工厂综合能源系统提出一种考虑冰蓄冷空调多种工作模式的多能协同优化模型,以综合日运行费用最低为优化目标建立优化模型,根据工厂设备工作模式的不同,提供更加准确的优化策略。建立了一个在调度周期内完成功能设备出力组合的优化运行策略的数学模型,优化目标为调度周期内供能机组总出力与各时段负荷需求差值,通过matlab编程对混合整数规划进行求解,算法为遗传算法,从而获得调度周期内最经济的运行方式。


 


      3、综合能源系统优化


      在进行初步设计以后,须对系统进行优化。对系统优化能够显著提升设备利用效率、系统经济性及环境效益。优化变量通常包括原动机的类型、容量,系统的运行策略等。


      通常从运行现场采集得到的数据一般更准确、真实,基于这些数据进行优化也更为可靠,但获得实际运行数据需要花费大量的时间并需要高昂的运行费用作为支撑,并且只能对具体的某个系统进行研究。使用瞬态仿真方法对系统进行优化,效率高,费用低,系统运行条件(包括原动机类型、容量、当地气候等)更改简便,因此目前大部分现有研究均采用计算机仿真对多能系统进行优化。常用的优化算法有混合整数线性规划法、混合整数非线性规划法、随机优化法、遗传算法等。


 


     4、设备容量与运行策略协同优化


      以年费用最小为目标函数,对典型三联供系统建立了混合整数非线性规划计算模型,并使用LINGO软件用分支界定法结合顺序线性规划得到不同地区不同建筑最优的系统配置和运行策略。对微型燃机和地下水源热泵组成的复合供能系统,以年总费用和天然气年节能率为优化目标,对系统在经济最优、以热定电和节能最优3种运行策略下的优化配置和运行规律进行了研究。设计了一种三级协同整体优化方法,第一级以年一次能源利用率最高为目标求解最优设备选型问题,第二级以二氧化碳排放最少为目标求解最优设备容量问题;第三级以年运行成本最低为目标,求解最优运行参数问题。基于生命周期法,以传统系统为参照对象,建立了能源、环境和经济效益的多目标优化模型,对联供系统的设备容量和运行策略进行了优化。研究还以北京市某综合办公楼为例,分析了不同目标函数下的最优配置方案和运行策略。设计了一种能够综合利用太阳能光伏光热且同时能满足冷热电需要的联供系统,使用判断矩阵法将能源、环境、经济评价三个指标综合成一个综合评估指标,就以热定电和以电定热两种运行方式下各制定了三种运行控制策略,分别对系统进行容量配置和控制策略的优化。


 


      建立了以燃气轮机容量为优化变量,多目标评价指标为目标函数的系统最优运行策略模型,利用南方地区某宾馆日逐时负荷进行算例分析,采用模式搜索算法求解得到基于负荷特征的系统最优容量配置及其对应的运行策略。


      微网优化方面,燃气轮机、风机光伏、燃料电池以及蓄能装置的数学模型,以系统经济性为优化目标,对冷热电多联供系统进行优化配置与优化运行研究。研究运用粒子群算法求解,得到三种运行方案下系统的配置结果。对含多种可再生能源的热电联供型微网应用机会约束规划理论建立经济运行优化模型,提出一种基于随机模拟技术的粒子群优化算法求解模型。根据不同的原动机配置对运行方案进行优化。


     五、结论与展望


     多能互补综合能源系统由于具备经济、环保、高效等优点,已经得到成熟的应用,然而由于技术障碍、政策限制等原因,在我国尚处于萌芽阶段。随着技术进步及鼓励性政策的密集落地,多能互补综合能源系统将迎来巨大的发展空间。



来源:交谷太阳能  作者:诸葛文峰

[←返回]

关于我们   |   关于合作   |   留言板   |   资料下载   |   广告服务  
  版权所有:南京诺溪新能源科技有限公司 苏ICP备14012130号   地址:南京金源路2号绿地之窗南广场D1栋808   
电话:025-52170985 18914486391